Año 2021

 

Microscopía holográfica digital como técnica de caracterización óptica para el estudio y caracterización de estructuras biológicas y geológicas (Lic. María. Florencia Martínez)

La microscopía holográfica digital (MHD) es una técnica óptica que ha cobrado un auge notorio en las últimas dos décadas, demostrando ser una herramienta poderosa para el estudio y caracterización tanto cualitativa como cuantitativa de una variedad de materiales, dispositivos y procesos. En la actualidad su rango de aplicaciones se ha extendido considerablemente, ya que puede aplicarse en diversos campos de investigación, tales como biología, electrónica, biotecnología, salud, geología, medicina, mecánica, micro- y opto-fluídica, entre otros. En este trabajo se expondrán tres aplicaciones específicas de la MHD, desarrolladas en el Grupo de Óptica Láser, dependiente del Instituto de Investigaciones en Energía No Convencional (INENCO-CONICET) y de la Universidad Nacional de Salta (UNSa). Estas aplicaciones se engloban en los campos de biología, salud y geología. Asimismo, se hablará acerca del dispositivo experimental utilizado y del procesamiento de la información óptica para la reconstrucción de los hologramas.

Jueves 14 de octubre, 11 h.

 

ID de reunión: 817 9522 3831
Código de acceso: 255327

Microscopias de sonda de barrido: La “visibilización” de la dimensión nano (Dra. Vanina Franco)

Las microscopías de sonda de barrido constituyen una poderosa herramienta para caracterizar superficies e interfases, particularmente sistemas con moléculas o estructuras biológicas. La caracterización de superficies funcionalizadas, es un campo en constante crecimiento dada la potencialidad de sus aplicaciones. El estudio de superficies de metales de transición, funcionalizadas con aminoácidos mediante STM, brinda información acerca de estructura molecular, el orden, y la reconstrucción que induce el proceso de quimisorción y/o fisisorción de estas moléculas en el sustrato, permitiendo el avance en el desarrollo de nanobiosensores de aplicación en diversas áreas. La caracterización de estructuras biológicas mediante AFM, tiene no solo una ventaja operativa, sino que además las mismas no son alteradas durante su medición. Por lo tanto, se pueden caracterizar in situ muestras biológicas obteniendo información topográfica, de propiedades viscoelásticas, entre otras. La “visualización” a escala nanométrica es fundamental para la caracterización de éstos sistemas, a nivel morfológico.
El Laboratorio de Física de Superficies e Interfases (LASUI) del IFIS, posee líneas de investigación basadas en diferentes microscopias. Se cuenta con dos microscopios, uno que trabaja en condiciones ambientales y otro en ultra alto vacío (UHV). El microscopio que trabaja en condiciones normales de presión y temperatura posee la versatilidad de diferentes técnicas: STM, AFM, MFM, KPFM. El microscopio de UHV, nos permite realizar sólo la técnica de STM. Mediante estas técnicas, se estudian sistemas e interfases que combinan moléculas biológicas, orgánicas y/o inorgánicas sobre superficies metálicas, semiconductoras o inertes, estructuras biológicas, etc. La potencialidad de las técnicas y la experiencia del LASUI brindan la posibilidad de generar nuevos vínculos y colaboraciones para el estudio de novedosos bionanosistemas.
Martes 29 de septiembre, 11 h.
ID de reunión: 859 3132 9998
Código de acceso: 614554

 

Año 2019


Dimensionamiento de una instalación fotovoltaica conectada a la red (Dr. Javier Schmidt)

En este seminario se comenzará haciendo un breve repaso de la situación de la energía fotovoltaica a nivel global, nacional y provincial. Posteriormente se explicará en qué consiste el programa Prosumidores, implementado en la provincia de Santa Fe para incentivar la generación distribuida de energía eléctrica. Se realizará después un ejercicio de dimensionamiento de un sistema fotovoltaico con conexión a la red eléctrica, que cumpla con los requisitos del programa Prosumidores. Se tomará para ello una factura de consumo eléctrico de un domicilio, y se explicará una metodología simple para dimensionar la potencia de la instalación fotovoltaica y para elegir el inversor correspondiente. Finalmente, se realizará alguna estimación de costos del sistema.

11/12/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Caracterización óptica de películas delgadas de silicio mediante Interferometría Holográfica Digital

(Ing. Nicolás Balducci)

En el presente trabajo se describe la implementación de un sistema óptico experimental de microscopía holográfica digital, mediante un esquema de interferómetro de Michelson, con el objetivo de medir espesores de películas delgadas del orden de fracciones de la longitud de onda del laser utilizado, y lograr la reconstrucción tridimensional de las superficies como una imagen del contraste de fase a través del desarrollo de algoritmos de procesamiento de los hologramas digitales por medio de la transformada discreta de Fourier. En una primera etapa, utilizando muestras de películas de plata depositadas sobre silicio cristalino, de espesores definidos en experiencias anteriores, se aplicó esta técnica para obtener imágenes del diagrama de fases, como método para poner a punto el montaje óptico y medir las distancias focales. La segunda etapa fue determinar la distancia focal optima, con tolerancias del orden del milímetro, situando la cámara (plano imagen) a diferentes distancias de la muestra (plano objeto) y analizando diferentes operadores de medición de foco mediante algoritmos propuestos en Matlab, para finalmente adoptar el método de mejor desempeño. La tercera etapa consistió en la corrección de las aberraciones ópticas en el diagrama de fases por métodos de procesamiento numérico. Estas aberraciones se deben principalmente a la inclinación del plano objeto respecto del plano imagen (tilt), y a las deformaciones de los frentes de onda del objeto y de referencia con respecto a una onda plana. Una vez cumplidos los tres pasos anteriores se procedió a obtener hologramas de la muestra de referencia, procesando las imágenes de fases se lograron imágenes tridimensionales de la superficie y mediciones del espesor del depósito de plata del orden de los 170 nm, que están de acuerdo con las mediciones realizadas sobre la muestra en experiencias precedentes. Por último, para cumplir con el objetivo propuesto, se tomaron hologramas de una muestra con películas delgadas de óxido de silicio sobre una oblea de silicio cristalino. Las imágenes de fase obtenidas y procesadas arrojaron mediciones de los espesores del óxido de aproximadamente 110 nm, como así también imágenes tridimensionales de los recubrimientos de óxido de silicio. Se pudo demostrar que este método es aplicable para la medición y caracterización de recubrimientos de películas delgadas sobre sustratos de silicio cristalino.

04/12/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Incorporación de sistemas fotovoltaicos con conexión a red: Parque Industrial Paraná

(Mg. Juan José Stivanello)

En este trabajo se estudió el comportamiento y la respuesta de la red de distribución eléctrica del Parque Industrial Paraná en la Provincia de Entre Ríos, Argentina, frente a la incorporación de sistemas fotovoltaicos con conexión a red. Se modeló parte de dicha red a través de herramientas computacionales específicas, particularmente por medio del software PSS®SINCAL SIEMENS y con un aporte del paquete PVsyst V5.02 - Evaluation Mode. Se utilizó información provista por la empresa de energía de la Provincia de Entre Ríos y también datos extraídos de la planta solar fotovoltaica de 2,88 kWp de la Universidad Tecnológica Nacional, Facultad Regional Paraná (UTN – FRP). Se plantearon diferentes escenarios que permitieron analizar flujos de potencia activa y reactiva, perfiles de tensión, pérdidas de la red, porcentaje de utilización de transformadores. Todo el análisis se realizó no sólo con datos de generación y demanda reales sino también bajo la mirada de los estándares requeridos por las normas actuales y observando además la calidad de energía generada por los sistemas fotovoltaicos con conexión a red cuya factibilidad técnica y ventajas quedaron demostradas.

27/11/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Propiedades fisicoquímicas de metaloproteínas, sistemas modelo y ligandos de iones metálicos relevantes en Biología: Relevancia y Potenciales aplicaciones. (Dra. Vanina Franco)

La contaminación actual de los suelos es un tema de agenda a nivel mundial. Una de las alternativas para frenar el cambio climático es la biorremediación de los mismos, particularmente aquellos en los que el contaminante principal es el sulfato proveniente de la aplicación de agroquímicos. El estudio de los bioprocesos que ocurren mediados por microorganismos son fuente potencial de nuevas aplicaciones en diversas áreas tecnológicas y del conocimiento. El estudio de sistemas biológicos se puede realizar a partir de dos enfoques opuestos y complementarios: el análisis del sistema completo o la evaluación de sus componentes aislados. Este último permite explicar los fenómenos que ocurren cuando las unidades que forman parte del mismo interactúan. Mediante espectroscopia de resonancia paramagnética electrónica (EPR) y espectroscopia de rotación se estudiaron enzimas involucradas en el ciclo del azufre y obtenidas de la bacteria sulfato-reductora Desulfovibrio desulfuricans, desde los dos enfoques mencionados anteriormente. En la reducción de sulfato a sulfito, intervienen ATP sulfurilasa y APS reductasa presentando ambas metaloenzimas centros paramagnéticos en su estructura. En fase condensada, mediante EPR, se caracterizaron estructural y magnéticamente estas dos metaloproteínas y un sistema modelo de cobre [Cu(glu)phen] que mimetiza la transferencia electrónica. En fase gas se estudiaron dos ligandos de interés biológico: ácido picolínico y nicotinamida, mediante espectroscopia de rotación con ablación laser en jet supersónico. Ambas moléculas presentan un anillo piridínico lo que ofrece posibilidades conformacionales para la formación de complejos con metales de transición y posibilita interacciones puente hidrógeno e hidrofóbicas, típicas de las que aparecen en metaloproteínas.

20/11/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


¿Es el sulfuro de estaño un material promisorio para la industria fotovoltaica? Análisis a través de masas efectivas de portadores de carga (Paula Buitrago Toro)

Las celdas solares hacen parte de los dispositivos que están en la cúspide ambiental de la conversión fotovoltaica de electricidad mejor exhibida ante la sociedad, por lo que la industria ha emprendido la búsqueda de materiales con propiedades óptimas que respondan a la demanda actual. Uno de los candidatos es el sulfuro de estaño (SnS) que se caracteriza por ser un calcogenuro semiconductor con band gap indirecto, que presenta alta conductividad y a su vez alto coeficiente de absorción y, además de ser abundante, carece de toxicidad ambiental, propiedades que lo hacen atractivo para la industria. Sin embargo, las celdas solares conformadas por SnS han presentado baja eficiencia (menos del 2 %), por lo que se busca mejorarla sin perder su capacidad absorbente. Se cree que al generar una baja concentración de defectos en el material éste mejora su rendimiento. Para estudiar esta posibilidad, se presenta un estudio teórico en el marco de la teoría del funcional de la densidad (DFT), mediante el cual se analiza la movilidad de portadores de carga a partir del cálculo de masas efectivas en el SnS, con simetría cristalográfica (Aem2) 39, bajo la influencia de defectos intrínsecos.

13/11/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Premio Nobel de Física 2019: nuevas perspectivas sobre nuestro lugar en el universo

(Dr. Jorge Navarro Sanchez)

El pasado 8 de octubre se otorgó el Premio Nobel de Física 2019 a los investigadores James Peebles por sus aportes en el área de Cosmología Física, así como a Michel Mayor y Didier Queloz por el descubrimiento del primer exoplaneta que orbita una estrella similar al sol. Durante el seminario se propone hacer un repaso de los principales aportes tanto de índole teórico como experimental realizados por los galardonados, los cuales condujeron a que sean considerados como ganadores de tan prestigioso reconocimiento. Teniendo en cuenta que el premio está dividido en dos partes, por un lado se hará un recorrido histórico por las ideas propuestas por Peebles, las cuales dieron el punta pie inicial para que la Cosmología fuera reconocida como una verdadera disciplina científica y por otra lado, se analizará el método propuesto y utilizado por Mayor y Queloz para la detección del primer exoplaneta (51 Pegasi b, anuncio realizado en octubre de 1995), lo cual brindó las herramientas conceptuales y experimentales necesarias para que hasta la fecha de hoy se hayan podido encontrar alrededor de 4000 exoplanetas.

31/10/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Sensores físicos y químicos basados en nanoestructuras de carbono (Dra. Silvia Montoro)

Un sensor es un dispositivo que responde a estímulos diversos, sean físicos o químicos, como podrían ser luz, calor, presión, humedad, especies químicas presentes, u otros. Ese estímulo es transmitido como un impulso resultante para ser luego medido, analizado, o controlado electrónicamente. Algunos de los requisitos que estos sensores deben cumplir están asociados con la especificidad y la rapidez de la respuesta, la sensibilidad en la detección, un corto tiempo de recuperación, bajo costo, y que sean amigables con el medioambiente. Otros requisitos suelen sumarse, asociados al costo y resistencia de los materiales empleados para su fabricación, simplicidad en la operación, moderna tecnología, u otros. El avance de las nanociencias y la nanotecnología ha permitido actualizar y extender el uso de los sensores más allá de las limitaciones conocidas hasta el advenimiento de nuevos materiales, los cuales reemplazan a los empleados en forma convencional. En este seminario se hará referencia a sensores fabricados con materiales basados en carbono, cuyas funciones difieren fundamentalmente según la estructura que el carbono adopta en cada uno de estos. Se hará una reseña de diversas estructuras posibles, tales como nanotubos, nanodiamantes, fulerenos, grafeno, y nanoestructuras híbridas, a modo de introducción.

16/10/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Heterojunturas de Silicio Amorfo Hidrogenado – Silicio cristalino: fabricación, caracterización y simulaciones numéricas para aplicaciones en celdas solares (Lic. Pedro Hierrezuelo Cardet)

La idea de combinar Silicio amorfo hidrogenado (a-Si:H) con Silicio cristalino (c-Si) en una celda solar fue propuesta 1983, a los efectos de beneficiarse de las excelentes propiedades de pasivación del a-Si:H a temperaturas bajas (T < 300°C). Esto permite reducir los costos de fabricación y a su vez mejorar la eficiencia del dispositivo foto-voltaico. Una forma de que las celdas híbridas sean más eficientes es mediante la caracterización de las diferentes capas que la componen. En este seminario se pretende, introducir algunos conceptos básicos acerca de la Física Aplicada a semiconductores, los cuales nos permitan entender el funcionamiento y construcción de las Celdas Solares, y discutir en profundidad el método de caracterización basado en la medición de la eficiencia cuántica externa.

09/10/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


La aerodinámica del Fútbol (Ing. Maximiliano Senno)

La aerodinámica es la rama de la física, dentro de la mecánica de fluidos, que se encarga de explicar los fenómenos que ocurren cuando un sólido se enfrenta a líquidos o gases en movimiento. Gracias a estos conocimientos, se ha perfeccionado el vuelo de aviones y planeadores, se han creado vehículos terrestres y marítimos más eficientes, se han fabricado turbinas eólicas más duraderas y se han construido edificios más altos y seguros. A priori, parecería un mundo algo alejado de los deportes y más concretamente, del fútbol. Sin embargo, la aerodinámica se vuelve imprescindible cuanto más nos acercamos al elemento fundamental de esta disciplina: el balón. En este seminario analizaremos las bases físicas que explican el comportamiento en vuelo de una pelota de fútbol, el conocido efecto Magnus, y cómo distintos parámetros de fabricación determinan el éxito (o el fracaso rotundo) de una pelota de fútbol. Finalmente, analizaremos algunos casos reales donde los modelos físicos estrechan fuertes lazos con el Rey de los deportes.

11/09/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Materia y energía oscuras, el gran misterio actual (Dr. Nicolás Budini)

En esta charla se hará un recorrido sintético por la historia y actualidad científica alrededor de uno de los grandes misterios que inundan nuestro conocimiento del universo: todo lo que nos rodea parece estar repleto de algo que no podemos ver, pero que presenta evidencias que indican que está ahí. Mediante estimaciones actuales se infiere que la materia ordinaria (bariónica, observable directamente) conforma sólo un ~5% de la masa total del universo. Nada menos que el 95% restante debería estar ahí para que todo funcione como los modelos actuales predicen, es decir que aunque no pueden detectarse fácilmente la materia oscura (~25% de la masa total) y la energía oscura (~70% de la misma) producen efectos más que apreciables en la dinámica del universo. Hoy en día existen ciertas ideas poco concretas y sin evidencias fuertes acerca de la naturaleza de esta masa (todavía) invisible pero hay grandes expectativas de que el misterio pueda resolverse durante las próximas décadas.

04/09/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Espectroscopía de dispersión de iones lentos y su aplicación al estudio de la distribución local de carga

(Dr. Ricardo Vidal)

La espectroscopía de dispersión de iones de baja energía (LEIS) es una de las técnicas más utilizadas para el análisis de superficies e interfaces. En LEIS la superficie de una muestra es bombardeada con iones de energía cinética del orden del keV y se mide el espectro de energía cinética de los iones dispersados. Utilizando un modelo clásico de colisiones binarias se puede determinar la composición elemental de la superficie. Además se puede obtener información sobre la estructura de la superficie analizando la variación de los espectros de LEIS con el ángulo de incidencia del proyectil. Por otra parte, la probabilidad de neutralización del ion incidente depende de las características del ion pero también de la estructura electrónica de la superficie. En particular, cuando un ion alcalino interactúa con una superficie, la probabilidad de neutralización depende del potencial electrostático local (LEP) justo encima de la superficie. En este seminario se discuten varios ejemplos de la relación entre la probabilidad de neutralización del ion alcalino, cuando el mismo interactúa con los diferentes átomos de la superficie, y el LEP.

28/08/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Fabricación y caracterización de celdas solares de perovskitas organo-metálicas (Lic. Jorge Caram)

Hace una década, las celdas solares basadas en perovskitas compuestas de materiales orgánicos e inorgánicos demostraron resultados sorprendentes, en relación a otras tecnologías emergentes. Las propiedades optoelectrónicas sobresalientes de estos materiales dieron un fuerte impulso por conseguir celdas de altas eficiencias y reducir los costos en relación con las celdas convencionales de silicio. Sin embargo, su fabricación conlleva numerosos pasos en los que, aún con la tecnología actual, no es posible obtener alta reproducibilidad ni estabilidad en los dispositivos fabricados. Es por eso que aún es necesario profundizar más en la comprensión del comportamiento y control de este tipo de materiales. En este seminario, se expondrá la experiencia adquirida recientemente en la fabricación y caracterización de dispositivos en el Institute of Advanced Materials de la Universidad de Jaume I, España, así como también en el estudio eléctrico de películas de perovskitas organo-metálicas.

22/08/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Látex híbridos basados en acrílicos y biopolímeros para su aplicación como recubrimientos

(Ing. Mariana Allasia)

En los últimos años, la industria de polímeros ha realizado esfuerzos considerables para desarrollar procesos más amigables con el medio ambiente reduciendo la dependencia de las materias primas derivadas del petróleo que poseen un alto impacto ambiental, como los monómeros acrílicos, a través de la incorporación de otras provenientes de fuentes renovables. Por otra parte, las regulaciones cada vez más exigentes y la mayor conciencia de la sociedad respecto al control de emisión de solventes volátiles indujeron, dentro del campo de los recubrimientos, al desarrollo de polímeros dispersos en agua, como una alternativa ecológica a los basados en solventes orgánicos. En este contexto, el empleo de proteínas resulta prometedor para el desarrollo de nuevos materiales híbridos altamente compatibilizados, con un mayor valor agregado, una menor toxicidad y una mayor biodegradabilidad. En este seminario se presentará una descripción básica de la síntesis de materiales híbridos en base acuosa para su aplicación como recubrimientos, junto con sus propiedades más importantes. Además, se mostrará como la microscopia de fuerza atómica (AFM) complementa las caracterizaciones tradicionales realizadas a los recubrimientos, a través del estudio de la morfología de las películas formadas.

14/08/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


A 50 años de la llegada del Apolo 11 a la Luna (Dra. Silvia Tinte)

El 16 de julio de 1969, los astronautas Armstrong, Aldrin y Collins despegaron de la plataforma de lanzamiento en el Centro Espacial Kennedy de la NASA en Florida en un viaje a la Luna y a la historia. Cuatro días después, mientras Collins orbitaba la Luna en el módulo de comando, Armstrong y Aldrin aterrizaron en el módulo lunar del Apolo 11 en el Mar de la Tranquilidad de la Luna. "Es un pequeño paso para el hombre, pero un gran salto para la humanidad" fue la famosa frase de Armstrong al convertirse en el primer ser humano en pisar la Luna el 20 de julio de 1969, hace 50 años. En el este seminario se presentará un recorrido de la misión incluyendo detalles de tipo técnico, el contexto histórico y algunas curiosidades de este hito científico y tecnológico.

31/07/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


El eclipse del año: Chile/Argentina, 2 de julio de 2019

(Dres. Roberto, Koropecki, Raúl Urteaga, Nicolás Budini y Federico Ventosinos)

El pasado 2 de julio tuvo lugar un eclipse de Sol que pudo verse de forma total en una franja que atravesó (de oeste a este) la parte central de nuestro país (además de Chile y gran parte del océano pacífico). Este fenómeno siempre produce mucha exaltación y miles de personas se movilizan para poder apreciarlo. El fenómeno en sí se da por la conjunción de varias cuestiones fortuitas y, en resumen, tiene lugar cuando nuestro planeta atraviesa la región de sombra que proyecta nuestro satélite natural. Aprovechando esta oportunidad, que se da con poca frecuencia, viajamos hasta la ciudad de Merlo (San Luis), apenas al norte del centro de la región de sombra, para observar y registrar el suceso. En este seminario mostraremos algunos aspectos básicos de los eclipses de Sol y también proyectaremos imágenes y videos de lo que pudimos registrar desde un lugar privilegiado para su observación.

24/07/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Estudio computacional de la inhibición de la actividad catalítica de la proteína telomerasa humana debida a substituciones de aminoácidos conservados. (Dr. Fernando Herrera)

La enzima Telomerasa humana es la encargada de adicionar secuencias nucleotídicas repetidas en los extremos 3’ de las cadenas de ADN. Es un complejo proteína/ARN formado por la proteína telomerasa y una cadena de ARN. La proteína contiene un bolsillo catalítico con varios residuos conservados, para los cuales se conocen mutaciones que son capaces de inhibir la actividad catalítica de la enzima. Entre ellos se puede encontrar una triada de aspárticos (D712, D868, D869) los cuales tienen un rol crucial en la actividad, y otros residuos (K626, R631, K902) para los cuales no se comprende totalmente su rol en el mecanismo enzimático. El objetivo principal de este trabajo es realizar un análisis teórico exhaustivo de la proteína wild type y de todos estos residuos, a través del estudio de mutaciones puntuales en los mismos. Debido a que no hay estructuras de alta calidad del complejo, se construyó un modelo del mismo, el cual consiste en la proteína, una hélice de ADN/ARN, 2 iones magnesio y el nucleido entrante o adicionado (en 2 estados diferentes). Se realizaron tres simulaciones independientes de dinámica molecular para la proteína wild type y para todas las mutaciones para las cuales se conoce que inhiben la actividad de la enzima (K902N, R631Q, R631A, D712A, D868A y D869A). Se realizaron también estudios de energía libre de unión y de escaneo de alanina. Los resultados permitieron encontrar que en la mayoría de las mutaciones existen desviaciones en el mecanismo mediado por 2 iones metálicos postulado para la enzima wild type. En particular, las mutaciones K902N y R631Q estarían inhibiendo la actividad de la enzima ya que no permiten la correcta salida del pirofosfato después de la reacción de adición de un nucleótido. Además, se encontró evidencia de que el mismo mecanismo de inhibición puede ser descripto para las mutaciones K626A, R631A y K902A. Con respecto a los aspárticos, la mutación D712A, evita la formación del intermediario pentavalente por lo que la reacción ni siquiera podría comenzar. La mutación D868A, en cambio, hace que se pierda la coordinación del hidroxilo O3 con uno de los iones magnesios, por lo que la reacción tampoco podría ocurrir. Finalmente, no se pudieron encontrar evidencias del mecanismo de inhibición de la actividad debido a la mutación D869A, probablemente debido al sampleo limitado de las simulaciones realizadas o a que es necesario un modelo más completo del complejo enzimático.

03/07/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Holograma de una partícula de luz (Dr. Claudio J. Bonin)

Hasta no hace mucho tiempo (y, particularmente en mi caso, hasta la semana pasada), se creía que era imposible medir el holograma de un fotón; consecuencia de lo que establecen las leyes fundamentales de la Física, ya que para esto es necesario determinar su función de onda de la Mecánica Cuántica. Sin embargo, científicos de la Facultad de Física de la Universidad de Varsovia han publicado en 2016 un trabajo en Nature Photonics, en el cual describen un experimento bastante simple que permite obtener el primer holograma real de un fotón. La idea está basada en usar los conceptos de la holografía clásica y extrapolarlos a los fenómenos cuánticos de interferencia (en lugar de ondas electromagnéticas clásicas). Si bien la Mecánica Cuántica tiene un amplio rango de aplicaciones y ha demostrado ser correcta con mucha precisión, hasta ahora no se ha podido explicar la naturaleza de las funciones de onda, en cuanto si solo son herramientas matemáticas que nos permiten describir los fenómenos del mundo microscópico o son entidades “reales” de la naturaleza. Con este tipo de desarrollo se puede llegar a conocer, ahora, la fase de las mismas. En esta charla se pretende contar la idea y el experimento reportados en este trabajo [Radoslaw Chrapkiewicz et al., Nature Photonics 10, 576 (2016)]. ¡Los comentarios y/o discusión sobre el tema de la charla serán más que bien recibidos!

19/06/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Transferencia de carga en la dispersión de Hidrógeno con átomos alcalinos adsorbido en Grafeno

(Dr. Marcelo Romero)

Se estudia el proceso de intercambio de carga en la dispersión de protones (H+) por átomos de K adsorbido en Grafeno, en el límite de bajo recubrimiento. Se incluyen en el cálculo los estados internos 3s y 3p del K así como también la matriz densidad modificada en el grafeno debido a la presencia del K. El sistema interactuante se describe con el Hamiltoniano de Anderson cuyos términos se calculan a partir de las propiedades químicas de los átomos interactuantes y de la naturaleza extendida de la superficie de Grafeno. Las fracciones de carga positiva y negativa del H en el proceso de colisión se obtienen usando el formalismo de funciones de Green-Keldysh, las mismas se calculan con el método de ecuaciones de movimiento, resolviéndolas hasta un segundo orden en el término de acoplamiento átomo-superficie. Encontramos que los átomos de C no contribuyen al proceso de intercambio de carga frontal H+- K, y que el estado 3p-K, ensanchado por la interacción con la superficie de Grafeno, provee una importante fuente de electrones para la ionización negativa del H, el cual también es promovido por la presencia del estado interno 3s-K.

26/06/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Imbibición capilar. ¿Cuánta información se puede obtener de ella? (Dr. Raúl Urteaga)

La imbibición capilar de un medio poroso es un campo de estudio en expansión dado su aplicabilidad directa en campos tan diversos como la microfluídica, la extracción de petróleo o la fabricación de nanomateriales. La dinámica de este fenómeno depende tanto de las propiedades del fluido como de la morfología del medio poroso y puede ser estudiada mediante diferentes modelos, siendo el más simple el modelo clásico de Lucas-Washburn, el cual propone asimilar al medio poroso como un paquete de capilares de radio uniforme. Si bien este modelo logra capturar la cinemática del frente de avance y se ha utilizado con éxito en infinidad de sistemas, es incapaz de describir correctamente otras características más complejas como el perfil de saturación o el flujo secundario que se observa al agotarse el reservorio de líquido. Modelos más complejos de tubos interconectados o el uso de coeficientes de difusión dependientes de la fracción de llenado permiten mejorar la descripción del proceso incorporando información más detallada de la estructura. En este seminario analizaremos los diferentes modelos de imbibición capilar en un amplio rango de escalas y cómo pueden utilizarse para obtener información de las estructuras porosas cuando se conocen las propiedades del fluido o bien de los fluidos una vez caracterizada la matriz porosa. Por último, se analizará la posibilidad de utilizar los modelos de llenado capilar para diseñar una dinámica de imbibición específica.

12/06/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Deep learning y su aplicación al análisis de imágenes biomédicas (Dr. Enzo Ferrante)

Durante las últimas décadas, las nuevas tecnologías de captura de imágenes tales como cámaras digitales, teléfonos móviles, dispositivos de imágenes médicas, satélites y microscopios electrónicos, han desencadenado un proceso de producción masiva de datos, inconcebible años atrás. Interpretar automáticamente la información almacenada en dichas imágenes es hoy posible gracias a los desarrollos llevados a cabo por investigadores y tecnólogos en visión computacional y aprendizaje automático, áreas en las que confluyen las ciencias de la computación y la matemática aplicada. En esta charla introductoria, indagaremos sobre uno de los conceptos que ha revolucionado recientemente las ciencias de la computación en general, y el análisis de imágenes en particular: el aprendizaje profundo (o deep learning en inglés). Estudiaremos las diferencias conceptuales entre aprendizaje profundo, aprendizaje automático e inteligencia artificial, intentaremos explicar por qué esta "revolución" se produjo hoy y no hace 20 años, definiremos los problemas básicos que constituyen el campo del análisis de imágenes biomédicas, y veremos la vinculación entre estos conceptos.

05/06/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


La imagen del año: primeros resultados del Event Horizon Telescope (Mg. Anderzon Palechor Ocampo)

El pasado 10 de abril, el Event Horizon Telescope (EHT), un conjunto a escala planetaria de ocho radiotelescopios terrestres trabajando juntos a través de una colaboración internacional; presentó en conferencias de prensa coordinadas en todo el mundo la primera evidencia visual directa del entorno cercano a un agujero negro súper-masivo, ubicado en el centro de la galaxia Messier 87 (M87). Ese mismo día, el importante descubrimiento se publicó en una serie especial de seis artículos en The Astrophysical Journal Letters. En este seminario se discutirá acerca de la información presentada en el segundo y tercer artículos de la serie, los cuales abarcan el arreglo experimental y el procesamiento de datos para la obtención de la imagen presentada.

31/05/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Técnicas basadas en la fotoconductividad para la caracterización de semiconductores con aplicaciones fotovoltaicas

(Lic. Leonardo Kopprio)

Para la fabricación de una celda solar de lámina delgada resulta de vital importancia efectuar una calibración previa de los reactores con los cuales se depositarán los distintos semiconductores que conforman la misma. Para ello es necesario contar con técnicas de caracterización que permitan evaluar fácilmente la calidad de los materiales depositados. Durante mi Tesis doctoral se estudiaron distintas técnicas de caracterización de estado estacionario basadas en mediciones relacionadas con la fotoconductividad. Específicamente, consisten en medir la conductividad mientras al material se lo ilumina con luz de energía mayor a su banda prohibida (gap), compuesta generalmente por una iluminación espacial y/o temporalmente periódica superpuesta a una iluminación homogénea y constante de mayor intensidad. En esta charla se presentarán los principales resultados obtenidos durante la realización de mi doctorado.

15/05/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)

 


“Spooky action at a distance”: el teorema de Bell y la no-localidad cuántica (Mg. Marcos Tacca)

La mecánica cuántica es una teoría sumamente exitosa, con un poder predictivo impresionante y que hasta ahora se corresponde con los datos experimentales. Sin embargo, no hay consenso respecto a su interpretación y sus resultados muchas veces van en contra de nuestra intuición. Tal es el caso del entrelazamiento cuántico, cuyas consecuencias llevaron a Einstein, Podolsky y Rosen a plantear la “paradoja EPR”, mediante la cual concluían que la cuántica era una teoría incompleta. En respuesta a la aparente paradoja, John Bell demostró que ninguna teoría que obedezca los principios de realismo y localidad puede reproducir los resultados que la cuántica predice. Para algunas interpretaciones, la demostración experimental de este teorema indica que en la naturaleza existe lo que Einstein llamaba una “spooky action at a distance” - una fantasmagórica acción a distancia.

24/04/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


METALOENZIMAS REDOX: Estudio de las cadenas de transferencia electrónica combinando técnicas bioquímicas y de magnetismo molecular (Dr. Carlos Brondino)

Las enzimas que contienen metales de transición en su estructura son componentes esenciales en los distintos tipos de ciclos biogeoquímicos que ocurren en la naturaleza. Estas metaloenzimas catalizan reacciones redox que involucran procesos de transferencia electrónica a través de distancias largas y que son mediados por distintos tipos de cofactores unidos por caminos químicos covalentes y/o no covalentes. Un ejemplo representativo de estas proteínas es la nitrito reductasa (Nir) que cataliza la reducción de NO2- a NO en el ciclo biogeoquímico del nitrógeno realizado por bacterias. En Sinorhizobium meliloti 2011 (Sm) esta reacción redox es catalizada por una Nir verde de cobre. SmNir es un homotrímero con dos átomos de cobre por monómero, uno de tipo 1 (T1, o cobre azul) y el otro de tipo 2 (T2, o cobre normal). T2, el centro catalítico, y T1, el centro de transferencia electrónica, están separados ~13 Å conectados por un camino Cys-His propuesto como camino de transferencia electrónica. El mecanismo de reacción postulado implica que el NO2- se une al T2 y es convertido a NO por la cesión de un electrón donado por el dador fisiológico externo a través del T1 (ver figura). El dador fisiológico es una proteína monomérica de cobre llamada pseudoazurina (Paz) de ~ 13 kDa que también contiene un centro T1. Discutiremos el mecanismo catalítico de la SmNir con énfasis en el proceso de transferencia electrónica T1?T2 y la interacción nitrito-T2 sobre la base de resultados obtenidos mediante mutaciones sitio dirigida, cinética enzimática, voltametria cíclica, espectroscopias UV-Vis y EPR, y técnicas computacionales de primeros principios combinada con mecánica molecular (QM/MM). Discutiremos además como información obtenida mediante EPR y mediciones magnéticas en sistemas inorgánicos simples es relevante para entender un problema biológico.

17/04/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Determinación por XPS del estado de protonación del glifosato: Caso del grupo amino (Dr. Gustavo Ruano Sandoval)

El glifosato es un compuesto químico que se aplica como herbicida de acción total sistémico (penetra en la planta y es trasladado por la savia hasta las raíces). Es el ingrediente activo del herbicida Round-Up TM (marca comercial) que en combinación con especies vegetales genéticamente modificadas es comercializada como una alternativa que maximiza rindes agropecuarios y su utilización no está exenta de controversias. El glifosato además es un buen secuestrador de metales de transición porque tiene a formar fácilmente complejos de coordinación con ellos. La molécula de glifosato (N-fosfonometil)glicina posee tres grupos químicos cuya deprotonación sucesiva con el pH del medio donde esta disuelto tiene consecuencias en la estructura y estabilidad de los quelatos que es capaz de formar. En el presente seminario comentará sobre experimentos de XPS tendientes a determinar el estado químico del grupo amino secundario (NH) de la molécula de glifosato con vistas a resolver un conflicto reciente en la literatura a este respecto. Demostraremos que si bien el estandar para la determinación de la secuencia de deprotonación es MNR (que explora la solución) XPS en UHV es capaz de arrojar luz sobre este tópico, si se tienen en cuenta a ciertos recaudos experimentales.

10/04/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)


Reconocimiento del Instituto de Física del Litoral a los alumnos de la Escuela Industrial Superior por su excelente desempeño en la XXVIII Olimpíada Argentina de Física

En octubre de 2018 se llevó a cabo la XXVIII Olimpíada Argentina de Física, competencia en la que tres estudiantes de la Escuela Industrial Superior obtuvieron medallas de oro y de plata. El Instituto de Física felicita y reconoce el esfuerzo y la motivación de los estudiantes y docentes entrenadores en el estudio de la Física. Por tal motivo, los invita a compartir las experiencias vividas con el personal de la comunidad científica.

03/04/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)

 


Nanogeles inteligentes para vacunación transdermal (Dra. Ana Songzoni)

Se presentará el desarrollo de un sistema de vacunación libre de agujas, fácil de usar y no invasivo, que consiste en nanogeles que presentan dos funciones: son sensibles a la temperatura y tienen capacidad de formar un film. Los nanogeles son redes poliméricas de tamaños nanométricos que tienen propiedades ideales para aplicaciones biomédicas, como un alto contenido acuoso, flexibilidad, compatibilidad celular, etc. Los nanogeles desarrollados en este trabajo de Tesis son capaces de contraerse a la temperatura de la piel, de manera que si se carga una proteína inmunogénica (responsable de la generación de respuesta inmunológica) en su interior, pueden liberarla de forma controlada una vez que son expuestos a la piel. Además, la capacidad de formación de film de estos nanogeles bifuncionales brinda la posibilidad de formar un parche previo a la aplicación o de aplicar la dispersión de los nanogeles bifuncionales directamente sobre la piel para formar un film in­situ. Esta doble funcionalidad de los nanogeles combina la capacidad de retener, proteger y liberar la vacuna en el sitio adecuado con la actividad de un film, volviéndolos una prometedora plataforma de vacunación transdermal. El trabajo abarca desde el diseño y la síntesis de los nanogeles bifuncionales, seguida por el estudio exhaustivo de estos nanogeles y de los films formados a partir de ellos, hasta su aplicación in vitro e in vivo con una proteína inmunogénica modelo. Además, se compara el desempeño del sistema desarrollado con el de otras dos plataformas de liberación dermal de propiedades similares. El trabajo de caracterización mediante técnicas microscópicas fue desarrollado en colaboración con el Dr. Mario C.G. Passeggi (h), con la participación de la Lic. Paula G. Felaj en algunos experimentos, motivo por el cual se presenta en este ciclo de seminarios.

27/03/2019, 11 hs, Auditorio CCT (Edificio Bernardo Houssay, Güemes 3450)